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Abstract. The magnetic extension of the Thomas-Fermi-Weizsäcker kinetic energy is used within density-
functional-theory to numerically obtain the ground state densities and energies of two-dimensional quantum
dots. The results are thoroughly compared with the microscopic Kohn-Sham ones in order to assess the
validity of the semiclassical method. Circular as well as deformed systems are considered.

PACS. 73.20.Dx Electron states in low-dimensional structures (superlattices, quantum well structures and
multilayers) – 78.20.Bh Theory, models and numerical simulation

1 Introduction

Semiclassical approaches to many-body systems are a very
valuable tool since they provide physical insights which
otherwise are very difficult to achieve. In fact, they have
been applied since many years ago to describe different
systems such as atoms, atomic nuclei, metals and, more
recently, metallic clusters and electronic nanostructures.
Two dimensional quantum dots are not an exception and
have been analyzed using the Thomas-Fermi models in,
for instance, references [1–6].

In reference [7] we performed calculations for quan-
tum dots using a selfconsistent Thomas-Fermi-Weizsäcker
(TFW) model similar to that developed by Zaremba
and coworkers [5]. It is our aim in this paper to extend
those calculations by including the effect of a perpen-
dicular magnetic field B using the magnetic extension of
the kinetic energy within density-functional theory. As in
reference [7] we will pay special attention to the quantita-
tive comparison with the microscopic Kohn-Sham solution
in order to asses the accuracy limits of the TFW densi-
ties and energies as a function of B. The magnetic exten-
sion of the Thomas-Fermi theory was rigorously presented
by Lieb et al. [3] and a selfconsistent numerical applica-
tion to circular dots was done in reference [4] but, to our
knowledge, no detailed comparison with microscopic cal-
culations has been given in the literature. We also present
in this manuscript symmetry unrestricted calculations for
deformed dots that had not been considered before within
this model.

A peculiar characteristic of the magnetic Thomas-
Fermi functional is its first-derivative discontinuity in the
density dependence [3], at particular density values. The
physical origin for this is found in the formation of con-
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stant energy Landau-bands in the non-interacting Fermi
gas at certain magnetic fields. This implies that the mean
field is discontinuous, thus manifesting the formation of
incompressible regions in the system, each one character-
ized by the number of full Landau bands, i.e., the fill-
ing factor ν. It is worth to point out that experimental
evidences of incompressible stripes at the edges of quan-
tum dots and antidots have been obtained by means of
far-infrared spectroscopy [8]. As we will show, the semi-
classical Euler-Lagrange equations selfconsistently deter-
mine the density profile, energy and chemical potential
of the quantum dot, which turn out to be in an overall
good agreement with full Kohn-Sham results for increas-
ing magnetic fields up to ν = 1.

Section 2 of the paper is devoted to the presentation
of the energy functional as well as the minimization equa-
tions. In Section 3 the results for circular as well as de-
formed quantum dots are given and, finally, Section 4
presents the conclusions.

2 Magnetic TFW functional

Using a local approximation to density functional theory
we assume that the energy of the system can be written in
terms of the electronic spin densities ρη(r), where η =↑, ↓,
as E =

∫
drE [ρ↑, ρ↓;B]. Notice also the explicit depen-

dence on the magnetic field B which is considered as a
functional parameter. The different contributions to the
energy density may be written as

E [ρ↑, ρ↓;B] = τ [ρ↑;B] + τ [ρ↓;B] +
1
2
vH(r)ρ

+ EXC(ρ↑, ρ↓) + vext(r)ρ + EZ(ρ↑, ρ↓;B), (1)

where the first two pieces give the kinetic energies of spin
up and down electrons; the third is the Hartree energy in
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terms of the Hartree potential vH and the total density
ρ = ρ↑+ ρ↓; the fourth is the exchange-correlation contri-
bution; the fifth is the energy due to the external potential
vext and, the last one corresponds to the Zeeman contri-
bution. As in references [5,7], the kinetic energy contains
a pure Thomas-Fermi term and a gradient (Weizsäcker)
one, τ = τTF + τW. The gradient term is given by

τW[ρη] =
h̄2

2m
λ

(∇ρη)2

ρη
, (2)

with λ = 1/4, while the Thomas-Fermi piece is [3,4]

τTF[ρη;B] =
1
2
h̄ωcDS

2
η

+h̄ωc

(
Sη +

1
2

)
(ρη − SηD) . (3)

In this last expression ωc = eB/mc is the cyclotron fre-
quency, D = eB/2πh̄c is the Landau level degeneracy per
unit area and Sη = [ρη/D] is the integer part [9] of the
local filling factor νη = ρη/D and gives the index of the
highest fully occupied Landau band. The two contribu-
tions in equation (3) give therefore the kinetic energy of
the fully occupied Landau bands and that corresponding
to the last partially filled band, respectively. It can be
shown [3] that, in the limit B → 0, the non-magnetic
Thomas-Fermi functional τTF(ρ,B = 0) = h̄2πρ2/2m is
recovered from equation (3).

For the exchange-correlation energy EXC we have
used the LSDA functional based on the Tanatar-
Ceperley calculations for the 2D uniform electron gas
[10] and the von Barth-Hedin interpolation for intermedi-
ate polarizations [11]. The expression can be found, e.g.,
in reference [12], where Kohn-Sham results for parabolic
dots at B = 0 were given. Notice that current-density
dependence is not included in the functional. This could
in principle be done within the so-called current-density-
functional theory although it is known that the contri-
bution to the ground state energy from these terms is in
general quite small and only at very high magnetic fields
they can be of relevance [13,14].

The Zeeman energy reads, in terms of the effective
gyromagnetic factor g∗ and Bohr magneton µB,

EZ(ρ↑, ρ↓;B) =
1
2
g∗µBB(ρ↑ − ρ↓). (4)

The energy functional is minimized by the ground state
spin densities, or equivalently by the ground state total
density ρ and magnetization m = ρ↑ − ρ↓, with the con-
straint of conservation of the total number of particles.
The corresponding Lagrange parameter µ is, by defini-
tion, the chemical potential. The two sets of equivalent
equations read

δE

δρ
= µ

δE

δm
= 0

⇔


δE

δρ↑
= µ

δE

δρ↓
= µ

. (5)

For convenience, we choose to work with the second set
which can be transformed, introducing new variables ψη =√
ρη, into the alternative Schrödinger-like equations

− 4λ
h̄2

2m
∇2ψη +

(
vext + vH +

∂EXC

∂ρη
+ Cη

+ αη
g∗

2
µBB

)
ψη = µψη, (6)

where we have defined α↑ = 1, α↓ = −1 and also intro-
duced the contribution from the Thomas-Fermi energy

Cη = h̄ωc

(
Sη +

1
2

)
. (7)

The solution of the two coupled equations (6), i.e., for
each spin component, has been obtained numerically by
discretizing the two-dimensional xy-plane into a uni-
form grid of points and using the imaginary time-step
method. The grid size is typically 70×70 points, while the
Laplacian operator is discretized by using 7 points for-
mulas. The stability of the results when increasing these
values has been checked. The Kohn-Sham results, we will
compare with below, have been obtained using a similar
method developed by us in reference [15].

3 Results

3.1 The TF plateaus

We begin the results section by discussing the effect of the
discontinuous contribution to the potential. We present
here calculations for two different dots: a circular one con-
taining N = 42 electrons under parabolic confinement
vext = (1/2)ω2

0r
2 [16,17] and a second one containing

N = 20 electrons in a deformed parabola

vext(r) =
1
2
ω2

0

4
(1 + β)2

(x2 + β2y2), (8)

with anisotropy factor [18] β = 0.75 and a coefficient ω0

given by Np = 20 and the same rs as for N = 42.
The spin up and down densities for the circular dot

are displayed in the upper-left panel of Figure 1, in com-
parison with the corresponding Kohn-Sham ones. The
horizontal dotted lines indicate the values ρ = D and
2D where D is the density for bulk filling factor ν = 1
(Sect. 2). The TFW density is clearly giving flat regions,
i.e., plateaus, at the densities of the bulk integer filling fac-
tors, which must be associated with incompressible stripes
in the finite system. Due to the effect of the Weizsäcker
term the transition between different plateaus is quite
smooth. In this particular case the spin down density has
attained the first plateau and is beginning to fill a second
one around the dot center. On the other hand, the spin
up density has already reached the second plateau at the
center of the dot.

The correlation of the plateaus with Landau bands is
made even clearer in the upper-right panel, where the
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Fig. 1. Upper row: left panel shows spin up and down densities
with TFW (solid) and Kohn-Sham (dashed) models. Dotted
lines indicate the bulk densities for filling factor 1 and 2. Right
panel displays the (spin up/down) KS eigenvalues (up/down
triangles) as a function of orbital angular momentum. The
horizontal line indicates the Fermi energy (effective atomic
units [16] are used). Lower row: spin densities for a deformed
quantum dot (see Sect. 3).

Kohn-Sham eigenvalues are plotted as a function of or-
bital angular momentum `. In this plot the horizontal line
at ε ≈ −1.24H∗ indicates the Fermi energy. A proportion-
ality between ` and r may be established by noting that
high ` values imply outer orbits. Therefore, at the dot
center (low `’s) two spin up bands are filled while for spin
down the second band is only partly occupied. When go-
ing towards the edge (increasing `) the second spin down
band is rapidly depleted and at a larger r the same hap-
pens with the second spin up band. This behaviour of the
microscopic solution is in excellent agreement with that
inferred from the plateaus of the left panel, thereby show-
ing the quality of the model. The formation of the plateaus
is not as clear in the KS densities because of rather large
density oscillations, quite similar to the Friedel oscillations
found in metals.

The two lower plots of Figure 1 show the plateaus
in spin up and down densities for the deformed dot at
B = 1 T. A behaviour similar to that of the circular case
is inferred, although in this case the plateaus adjust their
shape to the anisotropy β = 0.75 of the confining po-
tential. At larger magnetic fields, however, deviations are
obtained as we will show when presenting the systematic
results in Section 3.3

3.2 Circular dot with 42 electrons

In this subsection we show in a systematic way the re-
sults for the dot containing N = 42 electrons in a cir-
cular parabola, with rs = 1.5a∗0 and Np = 42. Figure 2
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Fig. 2. Evolution with magnetic field of density ρ(r) and mag-
netization m(r) for the circular dot with N = 42. Solid lines
correspond to TFW and dashed ones to KS. In each panel the
curves with lower values at the origin correspond to m(r), ex-
cept for B > 4 T where the dot is fully polarized and thus
m = ρ.

displays the evolution with magnetic field of the den-
sity and magnetization profiles in comparison with the
Kohn-Sham ones. In general the TFW density and mag-
netization are correctly averaging the KS values with a
rather good agreement for all the magnetic fields consid-
ered. At B = 5 T the TFW correctly yields equal density
and magnetization distributions, due to the achievement
of full polarization. At this magnetic field the KS result
corresponds to the maximum-density-droplet (MDD) so-
lution [19], in which the single-particle angular momenta
are successively occupied up to the `max = N−1 value. In-
creasing the magnetic field still further, i.e., entering the
region of fractional filling factor ν < 1, the dot evolves
by reconstructing the edge, as seen in the B = 6 and 7 T
panels. However, this physical behaviour is apparently not
well reproduced by the TFW model.

In the upper-left panel of Figure 3 a quantitative com-
parison between the energy per particle in TFW and KS
is provided. We see that the difference remains below 2%,
although on the plot it may seem magnified because of the
expanded scale. In the upper-right panel a comparison of
the TFW chemical potential µ with the KS Fermi energy
is given, which is again indicating the good estimate given
by the TFW of the less bound electron, until the edge re-
construction begins. We mention that we remain here in
the limit T → 0, although a small value of T is sometimes
necessary to converge the KS results.
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Fig. 3. Upper panels: (left) energy per particle within the
TFW (solid) and KS (dots) models; (right) TFW chemical
potential (solid) vs. KS Fermi energy (dots) for the circular
system with N = 42 electrons. Lower panels: corresponding
values for N = 20 electrons in a deformed parabola.

3.3 Elliptic dot with N = 20

The lower panels in Figure 3 represent the comparison
of the ground state energy per particle E/N and TFW
chemical potential vs. KS Fermi energy corresponding to
the 20-electron dot in a deformed parabola (Sect. 3.1). As
for the previous circular system the agreement between
the TFW and KS ground state energies is remarkable,
not exceeding in this case a 3%.

Figures 4 and 5 show within TFW and KS, respec-
tively, the local filling factors ν for selected values of the
magnetic field. A similar behaviour as that discussed for
the circular case is obtained. In fact we recognize the pref-
erence of the TFW density to produce flat regions asso-
ciated with the integer filling factors. By looking at the
central region we can also identify the progressive deple-
tion of the central plateau when increasing the magnetic
field. For instance, one can follow the evolution ν = 3, 2, 1
for B = 1, 1.5, 2.5 T, respectively. This behavior is also
inferred from the KS results (Fig. 5) although it is some-
how masked by the large oscillations of quantum origin.
As in the circular case, the prediction of the dot polariza-
tion with magnetic field is also in good agreement with
the microscopic result. This can be qualitatively seen in
Figures 4 and 5 by noting the clear depletion of the spin
down density starting at B = 3 T which ends with a fully
polarized dot (S = 10) for B ≥ 4.5 T.

A conspicuous prediction of the KS model is the grad-
ual change in shape of the quantum dot when increasing
the magnetic field. This is quite evident for B ≥ 4 T,
when the dot can no longer be considered elliptic, but
rather rectangular in shape. We attribute this to the com-
petition between the symmetry of the external field and
the preference for circular edge reconstructions induced
by large magnetic fields. A more abrupt transition to a
circular shape was obtained in reference [20] within the
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Fig. 4. Evolution, within the TFW model, of the local fill-
ing factor with magnetic field for the elliptic dot with N =
20 electrons. In each case spin up (left) and down (right) val-
ues are shown, except for B ≥ 4.5 T in which only the spin up
result is represented since full polarization has been attained.
White areas correspond to near-integer values (plateaus) while
black contours indicate half-integer transition values.

ultimate jellium model, which permits the deformation
of the external potential. In our model this is fixed and,
therefore, it seems natural that a stronger competition is
present. When comparing with the TFW results, we notice
that although the central plateau indeed seems to evolve
towards a rectangle (for B = 4.5−5.5 T), the outer edge
remains always elliptic. The deficiency of the semiclassical
model in reproducing morphological changes attributed to
the magnetic field can be explained by the fact that within
TFW the magnetic field effects are taken into account in
a purely local way (see Eq. (7)), and thus can hardly in-
duce any influence on the global shape. Another missing
feature in the TFW results is the incipient electron lo-
calization seen in the KS panels for B > 6 T (Fig. 5).
This localization has also been predicted within Hartree-
Fock theory [21] and more recently, using current-density-
functional theory [14].
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Fig. 5. Same as Figure 4 within KS. The ground state total
spin is indicated at the bottom of the plot for each magnetic
field. For B ≥ 4.5 T, the dot is fully polarized and thus S = 10.

4 Conclusions

The validity limits of the semiclassical TFW model have
been discussed by comparing with the microscopic Kohn-
Sham model. The magnetic extension of the semiclassical
kinetic energy produces a discontinuous mean field which
favours the appearance of density plateaus corresponding
to integer filling factors for the bulk gas. The correspon-
dence of these plateaus with the occupation of Landau
bands in the finite systems has been proved for a circular
dot with N = 42 electrons. In circular dots, the system-
atic evolution with B of the density and magnetization
profiles is rather well predicted by the TFW model up to
filling factor ν = 1. The same happens with the dot en-
ergy and chemical potential. In deformed dots the ground
state energy is also well reproduced by TFW, although
this model is not able to yield the shape changes induced
by the magnetic field, as found in the KS result.

This work has been performed under Grant No. PB98-0124
from DGESeIC, Spain.
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